A note on pseudo - symplectic Runge - Kutta
نویسندگان
چکیده
In 1], the concept of pseudo-symplecticness was introduced in order to construct explicit Runge-Kutta methods which mimic symplectic ones. Of particular interest are methods of order (p; 2p),-i.e. of order p and pseudo-symplecticness order 2p-, for which the growth of the global error remains linear. The aim of this note is to show the existence of methods of orders (4; 8) and (5; 10) with a minimal number of sequential stages.
منابع مشابه
Lagrangian Integration with Symplectic Methods
In this short note we show how to obtain Lagrangian integrators from known sym-plectic partitioned Runge-Kutta methods.
متن کاملSymplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملSymplectic Runge-Kutta-Nyström Methods with Phase-Lag Oder 8 and Infinity
In this work we consider Symplectic Runge Kutta Nyström methods with five stages. A new fourth algebraic order method with phase-lag order eight is presented. Also the symplectic Runge Kutta Nyström of Calvo and Sanz Serna with five stages and fourth order is modified to produce a phase-fitted method. We apply the new methods on several Hamiltonian systems and on the computation of the eigenval...
متن کاملMulti-symplectic Runge–Kutta-type methods for Hamiltonian wave equations
The non-linear wave equation is taken as a model problem for the investigation. Different multisymplectic reformulations of the equation are discussed. Multi-symplectic Runge–Kutta methods and multi-symplectic partitioned Runge–Kutta methods are explored based on these different reformulations. Some popular and efficient multi-symplectic schemes are collected and constructed. Stability analyses...
متن کاملSome Properties of Symplectic Runge-kutta Methods
We prove that to every rational function R(z) satisfying R(−z)R(z) = 1, there exists a symplectic Runge-Kutta method with R(z) as stability function. Moreover, we give a surprising relation between the poles of R(z) and the weights of the quadrature formula associated with a symplectic Runge-Kutta method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997